
Lua Scripting in OpenTX
Reference Guide

Contents
Contents
Introduction
Model Scripts

General description
Limitations of model scripts
Anatomy of model script

Location of model scripts
Lifetime of model script
Script interface definition
Script initialization
Script execution

One-Time Scripts
General description
Anatomy of one-time script

Location of one-time scripts
Lifetime of a one-time script
Script interface definition
Script initialization
Script execution

Function Scripts
Telemetry Scripts

General description
Anatomy of telemetry script

Location of telemetry scripts
Lifetime of telemetry script
Script interface definition
Script initialization
Script execution

Lua Script Reference
General Syntax

Local vs. Global
Local Variables
Local Functions
Inputs Syntax

Number Format
Types of Inputs

Outputs Syntax
Number Format

Lua General Functions
getTime()
getVersion()
getValue(source)
playFile(path)
popupInput(title, event, input, min, max)
getGeneralSettings()
playNumber(number, unit, att)

Lua Scripting in OpenTX

defaultStick(channel)
defaultChannel(stick)
killEvents(key-event)
getFieldInfo(fieldname)
playDuration(duration,playtime)
playTone(frequency, length, pause, attr, frequnecyInc)

Lua Model Functions
model.getTimer(timer)
model.setTimer(timer, data)
model.getInputsCount(input)
model.getInput(input, line)
model.insertInput(input, line, value)
model.deleteInput(input, line)
model.deleteInputs()
model.defaultInputs()
model.getMixesCount(channel)
model.getMix(channel, line)
model.insertMix(channel, mix, value)
model.deleteMix(channel, mix)
model.deleteMixes()
model.getLogicalSwitch(switch)
model.setLogicalSwitch(switch, value)
model.getCustomFunction(function)
model.setCustomFunction()
model.getOutput(index)
model.setOutput(index, value)
model.getInfo()
model.setInfo
model.getGlobalVariable(gvar, flightmode)
model.setGlobalVariable(gvar, flightmode, value)
model.getTelemetryChannel(idx)
model.setTelemetryChannel(idx, value)

Lua Display Functions
lcd.lock()
lcd.clear()
lcd.drawPoint(x, y)
lcd.drawLine(x1, y1, x2, y2)
lcd.drawRectangle(x, y, width, height)
lcd.drawText(x, y, text, att)
lcd.drawSwitch(x, y, switch, att)
lcd.drawPixmap(x, y, path)
lcd.drawScreenTitle(title, idx, cnt)
lcd.drawGauge(x1, y1, w, h, fill, maxfill)
lcd.drawChannel(x, y, source, att)
lcd.drawNumber(x, y, number ,att)
lcd.drawTimer(x, y, value, att)
lcd.getLastPos()
lcd.drawFilledRectangle(x, y, w, h, att)
lcd.drawSource(x, y, source, att)
lcd.drawCombobox(x, y, w, list, idx, flag)

Script Examples
One-Time Script Example: Hello World

Lua Scripting in OpenTX

One-Time Script Example: Generic Template
Model Script Example: Delta Mixer
Telemetry Script Example: Screen #1
Telemetry Script Example: Screen #2
Model Script Example: Automatic Battery Cell Detection

Appendix
LUA Source List
Character Maps

SMLSIZE
default
MIDSIZE
DBLSIZE
XXLSIZE

Links to external documentation:
Document Style
Acknowledgments

Lua Scripting in OpenTX

Introduction

OpenTX 2.0 added support for Lua (current version 5.2.2) user scripts.

Lua is a lightweight multi-paradigm programming language designed as a scripting language. More at
Wikipedia

There are several types of Lua scripts used in openTX. More general information about Lua scripts can be
found on page http://www.open-tx.org/lua-instructions.html

Lua scripts must be placed on SD card in correct folders and have an extension .lua. Maximum Lua script
file name length is TODO characters. The script folders have been reorganized in OpenTX 2.0.3. The folder
structure looks like this:

● /SCRIPTS/WIZARD/ - For the Wizard script
● /SCRIPTS/MIXES/ - For model scripts
● /SCRIPTS/FUNCTIONS/ - For function scripts
● /SCRIPTS/«modelname»/telemXX.lua - For telemetry scripts
● /SCRIPTS/TEMPLATES/ - For template scripts

Lua Standard Libraries Included

package no

coroutine no

table no

io no

os no

string no

bit Future 2.1.0?

math Available from 2.0.0

debug no

Lua Scripting in OpenTX

http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://www.open-tx.org/lua-instructions.html

Model Scripts

WARNING
Do not use Lua model scripts for controlling any aspect of your model that could cause a crash if script
stops executing.

General description

Each model can have several model scripts associated with it. These scripts are run periodically for entire
time that model is selected/active. These scripts behave similar to standard OpenTX mixers but at the
same time provide much more flexible and powerful tool.

Typically model scripts take several values as inputs, do some calculation or logic processing based on
them and output one or more values. Each run of scripts should be as short as possible. Exceeding certain
script execution runtime will result in script being forcefully stopped and disabled.

See also:

● Lua One-time Scripts describes one-time running general scripts
● Lua Function Scripts
● Lua Telemetry Scripts
● Lua Script Reference detailed reference of OpenTX Lua implementation and interface
● Lua Script Examples some example scripts with comments

Examples of typical use of model scripts

● replacement for complex mixes that are not critical to model function
● complex processing of inputs and reaction to their current state and/or their history
● filtering of telemetry values
● automatic detection of number of battery cells and setting of low battery threshold
● automatic announcing of maximum altitude for each DLG throw
● see also Lua Script Examples

Limitations of model scripts

● Should not display anything on LCD screen.
● Can't wait for user input via dialog.
● Should not exceed maximum allowed runtime/ number of instructions.
● Standard OpenTX mixes are run every XX milliseconds in a very deterministic way (guaranteed

execution) while model scripts are run from another thread with less priority. Their execution period
is around 30ms and is not guaranteed!

● A script could be disabled/killed anytime due to several causes like (error in script, not enough free
memory, etc...)

Anatomy of model script

Location of model scripts

Lua Scripting in OpenTX

Place them on SD card in folder /SCRIPTS/MIXES/

Lifetime of model script

● script is loaded from SD card when model is selected
● script init function is called
● script run function is periodically called (inside GUI thread, period cca 30ms)
● script is stopped and disabled if it misbehaves (too long runtime, error in code, low memory)
● all model scripts are stopped while one-time script is running (see Lua One-time scripts)

Script interface definition

Every script must include a return statement at the end, that defines its interface to the rest of OpenTX
code. This statement defines:

● script inputs (optional)
● script outputs (optional)
● script init function (optional)
● script run function

For example:

-- script body would be here

return { input=inputs, output=outputs, run=run_func, init=init_func }

This example defines:

● inputs table (array) as input values to model script
● outputs table as output of model script
● run_func() function as periodic execution function that takes inputs as parameters and returns

outputs table
● init_func() function as function that is called one time when script is loaded and begins execution.

Parameters init, input and output are optional. If model script doesn't use them, they can be omitted from
return statement. Example without init and output:

local inputs = { { "Aileron", SOURCE }, { "Ail. ratio", VALUE, -100, 100, 0 } }

local function run_func(ail, ratio)
 -- do some stuff
 if (ail > 50) and (ratio < 40) then
 playFile("foo.wav")
 end
end

-- script that only uses input and run
return { run=run_func, input=inputs }

Script initialization

Lua Scripting in OpenTX

If defined, init function is called right after the script is loaded from SD card and begins execution. Init is
called only once before the run function is called for the first time.

local <init_function_name>()

called once before first call to run function

Parameters: none

Returns: none

Script execution

The run function is the function that is periodically called for the entire lifetime of script. Syntax of run
function is different between model scripts and one-time scripts.
local <run_function_name>([first input, [second input], …])

Parameters: <> zero or more input values, their names are arbitrary, their
meaning and order is defined by the input table

Returns: none if output table is empty (i.e. script has no output)

values (comma separated list of values) list of output values,
their order and meaning is defined by the output table

Lua Scripting in OpenTX

One-Time Scripts

General description

These scripts start when called upon by a specific radio function or when the user selects them from a
contextual menu. They do their task and are then terminated and unloaded. Please note that all persistent
scripts are halted during the execution of one time scripts. They are automatically restarted once the one
time script is finished. This is done to provide enough system resources to execute the one time script.

See also:

● Lua Model Scripts describes continuously running model scripts
● Lua Script Reference detailed reference of OpenTX Lua implementation and interface
● Lua Script Examples some example scripts with comments

Examples of typical use of one-time scripts

● All kind of wizards to set up/edit model settings. The official model wizard is one example of such
script

● Replacement for templates
● Games

Limitations of one-time scripts

● When running all other Lua scripts are halted.
● Should not exceed maximum allowed runtime/ number of instructions.

Anatomy of one-time script

Location of one-time scripts

Place them anywhere on SD card, the folder /SCRIPTS/ is recommended. The only exception is official
model wizard script, that should be put into /SCRIPTS/WIZARD/ folder - that way it will start automatically
when new model is created.

Lifetime of a one-time script

● script is executed when user selects Execute on a script file from SD card browser screen.
● script executes until:

○ it returns value different from 0
○ is forcefully closed by user by long press of EXIT key
○ is forcefully closed by system if if it misbehaves (too long runtime, error in code, low

memory)

Script interface definition

Every script must include a return statement at the end, that defines its interface to the rest of OpenTX
code. This statement defines:

Lua Scripting in OpenTX

● script init function (optional)
● script run function

For example:

-- script body would be here

return { run=run_func, init=init_func }

This example defines:
● run_func() function as periodic execution function that takes a key press event as parameter and

returns some value
● init_func() function as function that is called one time when script is loaded and begins execution.

Parameter init is optional.

Script initialization

see script initialization

Script execution

The run function is the function that is periodically called for the entire lifetime of script. Syntax of run
function is different between model scripts and one-time scripts.

local <run_function_name>(event)

Parameters: event number that contains currently active key press
code.
If no key is pressed the value is 0.
event contains two distinct fields:

 * what happened (key up, key down, long key
press, etc)
 * which key is/was pressed

The actual values of event are usually not
important inside Lua script, the event is mainly
used as one of parameters for the popupInput()
function.

Returns: 0 script will continue execution (run function will
be called again

!=0 script is terminated (ends execution)

Example Script

Lua Scripting in OpenTX

Function Scripts
TODO (blank in Wiki)

Lua Scripting in OpenTX

Telemetry Scripts

General description
These scripts are used for building customized telemetry screens. Theoretically it is possible to have up to
7 custom telemetry screens, all written in Lua. It is possible to use different scripts on a per model basis.

Anatomy of telemetry script

Location of telemetry scripts

Place them on SD card in the folder /SCRIPTS/«modelname»/telemX.lua where X is a number from 0 to 6.
Example: /SCRIPTS/Extra/telem0.lua would be first custom telemetry screen for model Extra.

Lifetime of telemetry script

● script is loaded from SD card and executed when the model is loaded.
● script init function is called
● script background function is periodically called when custom telemetry screen is not visible
● script run function is periodically called when custom telemetry screen is visible
● script is stopped and disabled if it misbehaves (too long runtime, error in code, low memory)
● all telemetry scripts are stopped while one-time script is running (see Lua One-time scripts)

Script interface definition

Every script must include a return statement at the end, that defines its interface to the rest of OpenTX
code. This statement defines:

● script init function (optional)
● script background function
● script run function

For example:

-- script body would be here

return { run=run_func, init=init_func, background=bckgrnd_func }

This example defines:

● bckgrnd_func() function as periodic execution function that is periodically called when custom
telemetry screen is not visible

● run_func() function as periodic execution function that is periodically called when custom
telemetry screen is visible

● init_func() function as function that is called one time when script is loaded and begins execution.
Parameter init is optional.

Script initialization
Lua Scripting in OpenTX

see script initialization

Script execution

The run or background function is the function that is periodically called for the entire lifetime of script.
Which one is called depends on the visibility of custom telemetry screen:

● not visible - the background function is called. Script should not draw to screen. Usually used to
store/process telemetry data.

● visible - run function is called. Script should draw its screen.
local <background_function_name>()

Parameters: none

Returns: none

local <run_function_name>(event)

Parameters: event number that contains currently active key press code. If
no key is pressed, the value is 0
Event contains two distinct fields:
 * what happened (key up, key down, long key press, etc).
 * which key is/was pressed.

Returns: none

Examples

● Telemetry Screen #1
● Telemetry Screen #2

Lua Scripting in OpenTX

Lua Script Reference

General Syntax

Local vs. Global
All Lua model scripts in OpenTX exist in same Lua environment. This means, that they share global
functions and variables. Using global variable with the same name from two different scripts could lead to
unpredictable results. Therefore the use of global variables and functions should be avoided!

TODO: how to share data between scripts

Warning

Even variables defined inside local functions without local keyword are global. For example if we have two
scripts, script1:

local function run()
 global_var = 7 -- this one is GLOBAL
 local local_var = "foo" -- this one is local to script1,
 -- but visible in all script1 functions
end

and script 2:

local function run()
 if global_var == 7 then -- here global_var is already defined from script1
 playFile("Whoopsie.wav")
 end
 if local_var == "foo" then -- local_var here is nil, because it was not yet assigned
 print("We don't get here, local_var is nil")
 end
end

If we execute both scripts, we would hear "Whoopsie.wav" (if it is present on SD card). This means that
variable global_var is actually global even if it is first defined in some local function in other script.

Local Variables
Script can have any number (limited by memory usage) of local variables, their value is preserved between
each call to run function. They are defined as:

local simple_number = 4
local some_table = {1, 2, 120}

Local variables are only visible to the script that defined them. Two scripts can define a local variable with
the same name. These two variables don't share anything, each script has his own instance of variable.

Local Functions
Script can have any number (limited by memory usage) of local functions:

local function some_function(a, b, c)

Lua Scripting in OpenTX

 local value1 = a + b * c
 return value1
end

Local functions are only visible to the script that defined them. Two scripts can define a local function with
the same name. These two functions don't share anything, each script has his own instance of function.

Inputs Syntax
Input are only used in model scripts. However the same number format is returned by function getValue().

Number Format
Inputs are analogue values from opentTX that are converted to 16 bit signed integers before they reach
Lua scripts.

Analogue values such as sticks and sliders have value in percent multiplied by 10.24:

Aileron Stick Value Input Value to Script

0% 0

60.6% 620

100.0% 1024

-100.0% -1024

Switches (real and logical) are represented as:

Switch Position Input Value to Script

down (-100%) -1024

middle 0

up (100%) 1024

Telemetry values are returned as proper values:

Telemetry Value Input Value to Script

altitude 120.5m 120.5

A1 voltage 5.47V 5.47

Consumption 1260mAh 1260

Types of Inputs

Source

Source type provides current value of selected OpenTX variable (stick position, slider, channel).
User assigns assigns actual source for this input in Custom script menu. Source can be any value
OpenTX knows about (inputs, channels, telemetry values, switches, custom functions,...).

Lua Scripting in OpenTX

Syntax: { name, SOURCE }
Example: { "Aileron", SOURCE }

Defines SOURCE type input with name Aileron. Name length is limited to TODO.

Value

Value type provides constant value that user sets in Custom script menu

Syntax: { name, VALUE, min, max, default }
Example: { "Ratio", VALUE, -100, 100, 0 }

Defines VALUE input with name Ratio that has limits -100 and 100 and default value of 0. Name
length is limited to TODO.

Outputs Syntax

Outputs are only used in model scripts.

Syntax: { name1, name2 }
Example: { "Calc", "Out" }

Output name is limited to four characters.

Number Format

Outputs are 16 bit signed integers when they leave Lua script and are then divided by 10.24 to produce
output value in percent:

Output from Script Output as seen from
OpenTX

0 0%

996 97.2%

1024 100%

-1024 -100%

Lua Scripting in OpenTX

Lua General Functions

getTime()
Returns the time since the radio was started in multiple of 10ms

Parameters: none

Returns: number Number of 10ms ticks since the radio was started

Status: current Introduced in 2.0.0

Lua Scripting in OpenTX

getVersion()
Returns OpenTX version

Parameters: none

Returns: value (string) Version (i.e. 2.0.0)

Status: current Introduced in 2.0.0

Example: Display Version Number

local function run_func(event)
 lcd.lock()
 lcd.clear()
 lcd.drawScreenTitle("getVersion",1,1)

 lcd.drawText(10,20,getVersion(),MIDSIZE)

 if event == EVT_EXIT_BREAK then -- Test for Exit Key
 return 1 -- Exit
 else
 return 0
 end
end

return { run=run_func }

Lua Scripting in OpenTX

getValue(source)
Returns the value of a source

Parameters: source can be a constant (i.e STICK_RUDDER)
or a string name (i.e. “altitude”)

Returns: number value of source or nil if value is not available.

Status: current Introduced in 2.0.0

supported source constants

name

MIXSRC_FIRST_INPUT

MIXSRC_Rud

MIXSRC_Ele

MIXSRC_Thr

MIXSRC_Ail

MIXSRC_SA

MIXSRC_SB

MIXSRC_SC

MIXSRC_SD

MIXSRC_SE

MIXSRC_SF

MIXSRC_CH1

This may be a beter reference point until 2.0.6 http://www.rcgroups.com/forums/showpost.php?
p=28897780&postcount=298

Supported source names are:

name value example

"altitude" barometric altitude in meters 120.56

"altitude-max" max barometric altitude in meters 120.56

"vario" vario speed in m/s 120.56

"tx-voltage" Tx voltage in V 120.56

Lua Scripting in OpenTX

http://www.rcgroups.com/forums/showpost.php?p=28897780&postcount=298
http://www.rcgroups.com/forums/showpost.php?p=28897780&postcount=298

"rpm" RPMs 120.56

"latitude" GPS latitude in degrees, North is positive 45.5667

"longitude" GPS longitude in degrees, East is positive 120.5677

"pilot-latitude" first GPS value (usually pilot position) format same
as "latitude"

-12.567

"pilot-longitude" first GPS value (usually pilot position) format same
as "longitude"

-0.567

Names are case sensitive eg getValue("altitude")

Lua Scripting in OpenTX

playFile(path)
Plays a file from the SD card

Parameters: path full path to wav file (i.e. “/SOUNDS/en/system/tada.wav”)

Returns: none value of source or nil if value is not available.

Status: current introduced in 2.0.0

Introduced in 2.1.0
If you use a relative path, will append current language to the path.

Lua Scripting in OpenTX

popupInput(title, event, input, min, max)
Raises a popup on screen that allows uses input

Parameters: title (string) Text to display

event (number) the event variable that is passed in from the
Run Function (key pressed)

input (number) value that can be adjusted by the +/- keys

min (number) min value that input can be decremented by
the - key

max (number) max value that input can be decremented by
the - key

Returns: result (string) “OK” ENT pressed
(string) “CANCEL” EXIT pressed
(number) the result of the input adjustment

Status: current introduced in 2.0.0

Example: Pressing +/- will increment/decrement number.

local result = 0
local swtch = 0

local function run_func(event)
 lcd.lock()
 lcd.clear()
 lcd.drawScreenTitle("popupInput",1,1)

 result = popupInput("Input", event, swtch, -10, 10)
 lcd.drawNumber(62,24,swtch,0)
 if result == "OK" then
 return 0 -- ignore
 elseif result == "CANCEL" then
 return 1 -- exit program
 else
 swtch = result -- it is number
 return 0
 end

end

return { run=run_func }

Lua Scripting in OpenTX

Lua Scripting in OpenTX

getGeneralSettings()
Returns a table containing battMin and battMax

Parameters: none

Returns: value (general-table) Min and Max battery value

Status: Current Introduced 2.0.6

General Table Format

battMin (number) Minimum Battery

battMax (number) Maximum Battery

Example: Display Min and Max Battery volatge

local settings=getGeneralSettings()
lcd.drawNumber(10,20,settings.battMin,LEFT+MIDSIZE)
lcd.drawNumber(100,20,settings.battMax,LEFT+MIDSIZE)

Lua Scripting in OpenTX

playNumber(number, unit, att)

Parameters: number (integer)

unit (integer)

att (integer)

Returns: 0

Status: Current Introduced 2.0.0

Unit table

Unit Sound Description

0

1 Volts 0115.wav

2 Amperes 0118.wav

3 Meters per Second 0120.wav

4

5 Speed KMH or Knots depending on radio setting (imperial/metric)

6 Height Number is meters. Converted to feet for Imperial.

7 Temperature Number is celcius. converted to F if radio is in Imperial.

8 Percent

9 Millions

10 MH

11 Watts

12 DB

13 Feet

14 Speed KMH or Knots depending on radio setting (imperial/metric)

15 Hours

16 Minutes

17 Seconds

18 RPM

Lua Scripting in OpenTX

19 Gee

20 Degrees

21

22

23 Point Zero

24 Point two

25 Point four

26 Point six

27 Point eight

Attr

ATTR

PREC1 Add decimal place to number. ie if number is 58, will announce 5.8

Lua Scripting in OpenTX

defaultStick(channel)
Get stick that is assigned to a channel. See Default Channel Order in General Settings

Parameters: number (number) Channel Number

Returns: value (number) Stick assigned to this channel

Status: Current Introduced 2.0.0

Lua Scripting in OpenTX

defaultChannel(stick)
Get channel assigned to stick. See Default Channel Order in General Settings

Parameters: stick (number) Stick Number

Returns: nil

value (number) Channel Number

Status: Current Introduced 2.0.0

Lua Scripting in OpenTX

killEvents(key-event)
Removes key-event from event

Parameters: key-event (number) Key events to remove (mask)

Returns: nil

Status: Current introduced in 2.0.0

Key Events comments

EVT_MENU_BREAK

EVT_PAGE_BREAK

EVT_PAGE_LONG

EVT_ENTER_BREAK

EVT_ENTER_LONG

EVT_EXIT_BREAK

EVT_PLUS_BREAK

EVT_MINUS_BREAK

EVT_PLUS_FIRST

EVT_MINUS_FIRST

EVT_PLUS_RPT

EVT_MINUS_RPT

Lua Scripting in OpenTX

getFieldInfo(fieldname)

Gets detailed information about field.

Parameters: fieldname (string) short field name. see LUA Source List

Returns: value (field-table) details of field

Status: Current 2.0.8

Field Table Format

id (number) Field index

name (string) Short Name

desc (string) Long description for field

Lua Scripting in OpenTX

playDuration(duration,playtime)

Parameters: duration (integer)

playtime (boolean)

Returns: none

Status: Planned 2.1.0

Lua Scripting in OpenTX

playTone(frequency, length, pause, attr, frequnecyInc)

Parameters: frequency (integer) Frequency of tone, in Hertz

length (integer) Length of tone in ms

pause (integer)

attr (integer) See table below

frequencyInc (integer)

Returns: none

Status: Planned 2.1.0

Attr Description

PLAY_NOW Play immediately

PLAY_BACKGROUND Place in background queue

Lua Scripting in OpenTX

Lua Model Functions
Please note that writing (even the same value) to model settings will cause the a write to EEPROM. This
could occur within 5 seconds of the change or when model is unloaded or radio switched off.

model.getTimer(timer)
Returns model timer

Parameters: timer (number) timer number

Returns: nil unknown timer number.

value (timer-table) timer data

Status: current introduced in 2.0.0

Timer Table Format

mode (number) timer trigger source: off, abs, stk, stk%,
sw/!sw, !m_sw/!m_sw

start (number) start value [seconds], 0 for up timer, 0> down
timer

value (number) current value [seconds]

countdownBeep (number) countdown beep
(0-silent, 1-beeps, 2-voice)

minuteBeep (boolean) minute beep

persistent (number) persistent timer

Example:

--get timer data into tim1
tim1 = model.getTimer(1)
--access returned values as tim1.<value>
if tim1.value > 0 then
 --do something
end

Lua Scripting in OpenTX

model.setTimer(timer, data)
Sets model timer

Parameters: timer (number) timer number

data (timer-table) new timer data. See

Returns: none

Status: current introduced in 2.0.0

see model.getTimer(timer) for timer table format

Lua Scripting in OpenTX

model.getInputsCount(input)
Returns number of lines for given input

Parameters: input (unsigned number) input number (0 -> max inputs - 1)

Returns: value (unsigned number) number of configured lines for given
input.

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.getInput(input, line)
Returns input data for given input and line number

Parameters: input (unsigned number) input number (0 -> max inputs - 1)

line (unsigned number) input line (0 -> max lines - 1)

Returns: value (input-table) input data

Status: current introduced in 2.0.0

Input-Table Format

name (string) input line name

source (number) input source index

weight (number) input weight

offset (number) input offset

Lua Scripting in OpenTX

model.insertInput(input, line, value)
Inserts an Input at specified line

Parameters: input (unsigned number) input number (0 -> max inputs - 1)

line (unsigned number) input line (0 -> max lines - 1)

value (input-table) see model.getInput(input, line)

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.deleteInput(input, line)
Delete line from specified input

Parameters: input (unsigned number) input number (0 -> max inputs - 1)

line (unsigned number) input line (0 -> max lines - 1)

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.deleteInputs()
Delete all Inputs

Parameters: none

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.defaultInputs()
Set all inputs to Defaults.

Parameters: none

Returns: none

Status: current introduced in 2.0.0

Example:

local function run_func(event)
 model.defaultInputs()
 return 1
end

return { run=run_func}

Radio before script is run

Radio after script is run

Lua Scripting in OpenTX

model.getMixesCount(channel)
Get the number of Mixer lines that the specified Channel has

Parameters: channel (number) Channel number to look up. Zero numbered (i.e.
CH1 is 0)

Returns: value (number) number of line

Status: current introduced in 2.0.0

Example

 mix = model.getMixesCount(0)
 lcd.drawNumber(10,20,mix,LEFT+MIDSIZE)

Radio Configuration

Result

Lua Scripting in OpenTX

model.getMix(channel, line)
Get configuration for specified Mix

Parameters: channel (number) Channel number to look up. Zero numbered (i.e.
CH1 is 0)

line (number) line number of Mix. Zero numbered.

Returns: value (mix-table) line details

nil invalid parameters

Status: current introduced in 2.0.0

Mix-Table Format

name (string)

source (number)

weight (number) Weight value or gVar1..9 = 4096..4114, -
gVar1..9 = 4095.. 4087

offset (number) Offset value or gVar1..9 = 4096..4114, -
gVar1..9 = 4095.. 4087

switch (number) Switch Number

multiplex (number) 0=ADD, 1=MULTIPLY, 2=REPLACE

Lua Scripting in OpenTX

model.insertMix(channel, mix, value)
Insert a mixer line into Channel

Parameters: channel (number) Channel number to look up. Zero numbered (i.e.
CH1 is 0)

line (number) line number to insert. Existing line will be
moved down one line

value (mix-table) see model.getMix(channel, line)

Returns: nil

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.deleteMix(channel, mix)
Delete mixer line from specified Channel

Parameters: channel (number) Channel number to look up. Zero numbered (i.e.
CH1 is 0)

line (number) line number to delete. Existing lines will be
moved up one line

Returns: nil

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.deleteMixes()
Removes ALL lines from ALL channels

Parameters: none

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.getLogicalSwitch(switch)
Get Logical Switch parameters

Parameters: switch (number) Logical Switch Number

Returns: value (switch-table)

Status: current introduced in 2.0.0

Switch-Table Format

func (number)

v1 (number)

v2 (number)

v3 (number)

and (number)

delay (number)

duration (number)

Lua Scripting in OpenTX

model.setLogicalSwitch(switch, value)
Set Logical Switch parameters

Parameters: switch (number) Logical Switch Number

value (switch-table) See model.getLogicalSwitch(switch).

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.getCustomFunction(function)
Get Special Functions

Parameters: function (number) Special Function Number

Returns: value (function-table)

Status: current introduced in 2.0.0

Function-Table Format

switch (number) Switch Number

func (number) Action Number

name (string) Name of track to play, only returned if Action
is play track or sound.

value (number)

mode (number)

param (number)

active (number) 0 = !Enabled, 1 = Enabled

Lua Scripting in OpenTX

Function Table. Caution, table behavior changes depending on the function. Need to determine a good way
to show this information. The sound orientated functions in particular affect the usages of fields.
Unused variables will contain values from a previous function i.e. if you change a function and value is no
longer used, it will still contain the value from the old function.

Action Parameter func value mode param

Safety CHx 125..-125 0 Parameter Value Channel 0-21

Trainer 1 0

Trainer RUD 1 1

Trainer ELE 1 2

Trainer THR 1 3

Trainer AIL 1 4

Instant Trim 2

Play Sound 10

Reset Timer1 3 0

Reset Timer2 3 1

Reset All 3 2

Reset Telemetry 3 3

Set Timer 1 0..n 4 Parameter Value 0

Set Timer 2 0..n 4 1

Vario 18

Play Value - - - 12

Start Logs 0.0..25.5 20 Parameter value * 10

Volume source 6 See source table

Backlight 21

Background
Music

Background
Music Pause

17

Adjust GV1..9 Value 5 Parameter Value 0 GV 0..8

Adjust GV1..9 Source 5 See source table 1 GV 0..8

Adjust GV1..9 GVAR 5 GV 0.8 2 GV 0..8

Adjust GV1..9 Increment 5 0 = -1, 1 = +1 3 GV 0..8

Lua Scripting in OpenTX

Lua Scripting in OpenTX

model.setCustomFunction()

Parameters: function (number) Special Function Number

value (function-table) See model.getCustomFunction(function)

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.getOutput(index)
Get servo details

Parameters: index (number) Channel Number (Zero Numbered)

Returns: value (output-table)

nil

Status: current 2.0.0

Output-Table Format

name (string) Channel Name

min (number) Minimum % * 10

max (number) Maximum % * 10

offset (number) Subtrim * 10

ppmCenter (number) Offset from PPM Center. 0 = 1500

symetrical (number) Linear Subtrim 0 = Off, 1 = On

revert (number) Direction 0 = ---, 1 = INV

curve (number) Curve number 0..31 = curve(1)..(32), -2..-33
= !curve(1)..(32)
Nil if no curve set

Lua Scripting in OpenTX

model.setOutput(index, value)

Set servo properties

Parameters: index (number) Channel Number (Zero Numbered)

value (output-table) see model.getOutput(index)

Returns: nil

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.getInfo()
Get current Model information

Parameters: none

Returns: value (model-table) Current Model information

Status: current introduced in 2.0.6

Model-Table Format

name (string) model name

id (number) receiver number

Example:
Get the Model name and Number of current Model

 modelinfo = model.getInfo()
 lcd.drawText(10,20,modelinfo.name,MIDSIZE)
 lcd.drawNumber(10,30,modelinfo.id,MIDSIZE)

Current Models in Radio

Script Output

Lua Scripting in OpenTX

model.setInfo
Set the current Model Name and Number

Parameters: value (model-table) Current Model information

Returns: none

Status: current introduced in 2.0.6

Example:

Lua Scripting in OpenTX

model.getGlobalVariable(gvar, flightmode)
Get value of Gvar for specified Flight Mode

Parameters: gvar (number) gVar number

flightmode (number) flight mode

Returns: value (number) gVar value. If value is > 1024 then gVar is
getting its value from another flightmode. Subtract
1025 to get the actual flightmode number.

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.setGlobalVariable(gvar, flightmode, value)

Parameters: gvar (number) gVar number

flightmode (number) flight mode

value (number) value of GVAR

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

model.getTelemetryChannel(idx)

Parameters: idx (integer) Channel number. A1..A4 (zero numbered)

Returns: value (telemetry-table)

nil

Status: current introduced in 2.0.8

Telemetry-Table Format

range (number) Range

offset (number) Offset

alarm1 (number) Low Alarm

alarm2 (number) Critical Alarm

unit (integer) see Unit table

Unit Table

Unit index

Volts (V) 0

Amps (A) 1

Speed (m/s or ft/s) 2

Raw (-) 3

Speed (km/h or miles/h) 4

Meters (m or ft) 5

Temp () 6

Fule (%) 7

mAmps (mA) 8

Lua Scripting in OpenTX

model.setTelemetryChannel(idx, value)

Parameters: idx (integer) Channel number

value (telemetry-table) see model.getTelemetryChannel(idx)

Returns: none

Status: current introduced in 2.0.8

Lua Scripting in OpenTX

Lua Display Functions

lcd.lock()
Prevents main OpenTX code from modifying LCD screen. This lock is reset every time script is run and
must be set again if script wants LCD to be locked on each iteration.

Parameters: none

Returns: none

Status: current introduced in 2.0.0

lcd.clear()
Clears the LCD screen

Parameters: none

Returns: none

Status: current introduced in 2.0.0

lcd.drawPoint(x, y)
Draws a single pixel at (x,y) position

Parameters: x (integer) x position in pixels

y (integer) y position in pixels

Returns: none

Status; current introduced in 2.0.0

Note: Taranis has an LCD display width of 212 pixels and height of 64 pixels. Position (0,0) is at top left. Y
axis is negative, top line is 0, bottom line is 63.

Lua Scripting in OpenTX

lcd.drawLine(x1, y1, x2, y2)
Draws a line from (x1,y1) to (x2,y2)

Parameters: <x1,y1> (integer) start position. See lcd.drawPoint()

<x2,y2> (integer) end position. See lcd.drawPoint()

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

lcd.drawRectangle(x, y, width, height)
Draws a rectangle from top left corner (x,y) of specified width and height

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

width (integer) width in pixels

height (integer) height in pixels

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

lcd.drawText(x, y, text, att)
Draws a text beginning at (x,y)

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

text (string) text to display.

att text attributes

Returns: none

Status: current introduced in 2.0.0

Text Attributes:
All att values can be combined together using the + character. ie BLINK + DBLSIZE. See the Appendix for
available characters in each font set.

value font companion version Note

0 normal font

DBLSIZE double size font

MIDSIZE mid sized font

SMLSIZE small font

INVERS inverted display

BLINK blinking text

XXLSIZE jumbo font 2.0.6

LEFT left justify 2.0.6 Only for drawNumber

Special Characters

Hex Decimal Function Example

0x1D 29 Tab local string = 'hello\31\110world'
tab inserted btween hello and world

0x1E 30 Newline local string = 'hello\30world'
world will print on next line

0x1F 31 x co-ord prefix. local string = 'hello\31\110world'
world will print from x=110

< 0x20 all other codes will insert an extended space

Lua Scripting in OpenTX

lcd.drawSwitch(x, y, switch, att)
Draws a text representation of switch at (x,y)

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

switch (integer) number of switch to display, negative number
displays negated switch

att (integer) text attribute See lcd.drawText(x, y, text, att)

Returns: none

Status: current introduced in 2.0.0

Note: Testing shows that as of 2.0.8, only the SMLSIZE BLINK & INVERS attribute works correctly.

Lua Scripting in OpenTX

lcd.drawPixmap(x, y, path)
Draws a bitmap at (x,y)

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

path (string) full path to the bitmap on SD card (i.e. “/BMP/
test.bmp”)

Returns: none

Status: current introduced in 2.0.0

Lua Scripting in OpenTX

lcd.drawScreenTitle(title, idx, cnt)
Draws a title bar

Parameters: title (string) text for the title

idx (integer) page number

cnt (integer) total number of pages. Only used as indicator on
the right side of title bar. (i.e. idx=2, cnt=5, display
“2/5”)

Returns: none

Status: current introduced in 2.0.0

Example: lcd.drawScreenTitle("DEMONSTRATION",1,3)

Lua Scripting in OpenTX

lcd.drawGauge(x1, y1, w, h, fill, maxfill)
Draws a simple gauge that is filled based upon fill value.

Parameters: <x1,y1> (integer) start position. See lcd.drawPoint()

w (integer) width in pixels

h (integer) height in pixels

fill (integer) amount of fill to apply

maxfill (integer) total value of fill

Returns: none

Status: current introduced 2.0.6

Example: lcd.drawGauge(50, 42, 100, 18, 25, 100)

Lua Scripting in OpenTX

lcd.drawChannel(x, y, source, att)
Draw the value of a source. Equivalent to lcd.drawText(x, y, model.getValue(source), att)

Parameters: <x,y> (number) top left text position. See lcd.drawPoint()

source can be a constant (i.e STICK_RUDDER)
or a string name (i.e. “altitude”). See getValue(source)

att text attributes. See lcd.drawText(x, y, text, att)

Returns: none

Status: current Introduced 2.0.6

Lua Scripting in OpenTX

lcd.drawNumber(x, y, number ,att)
Draw a number on the display

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

number (integer) value to display

att text attributes. See lcd.drawText(x, y, text, att)

Returns: none

Status: current introduced 2.0.0

To display a floating point number, use the PREC1 or PREC2 attributes.

lcd.drawNumber(62,15,312,DBLSIZE + PREC2 + LEFT)

Lua Scripting in OpenTX

lcd.drawTimer(x, y, value, att)

Display a value formatted as time

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

value (timer) A timer value

att text attributes. See lcd.drawText(x, y, text, att)

Returns: none

Status: current Introduced 2.0.6

Lua Scripting in OpenTX

lcd.getLastPos()

Returns the last X position from previous output

Parameters: none

Returns: number (integer) X position

Status: current Introduced 2.0.6

Lua Scripting in OpenTX

lcd.drawFilledRectangle(x, y, w, h, att)

Draw a rectangle on the screen as a solid block

Parameters: <x,y> (number) top left text position. See lcd.drawPoint()

width (number) width in pixels

height (number height in pixels

att text attributes. See lcd.drawText(x, y, text, att)

Returns: none

Status: current Introduced 2.0.0

Example: lcd.drawFilledRectangle(50,42,100,18,0)

Lua Scripting in OpenTX

lcd.drawSource(x, y, source, att)

Displays the name of the corresponding input as defined by the source.

Parameters: <x,y> (number) top left text position. See lcd.drawPoint()

source (number) Input index number

att text attributes. See lcd.drawText(x, y, text, att)

Returns: none

Status: current Introduced 2.0.0

Example: lcd.drawSource(10,20,2,LEFT+MIDSIZE)

Radio configuration Screen, showing that Input 02 is AIL

Lua Scripting in OpenTX

lcd.drawCombobox(x, y, w, list, idx, flag)

Parameters: <x,y> (integer) top left text position. See lcd.drawPoint()

w (integer) width of comboBox

value (combo-list) A array of items to display in the combo box

idx (integer) Index of entry to highlight

flag (integer) 0 Collapsed, 1 = Expanded

Returns: none

Status: current Introduced 2.0.0

Example: table[1] = "mustang"
 table[2] = "corsair"
 table[3] = “spitfire”
 lcd.drawCombobox(10,20,100,table,2,1)

Lua Scripting in OpenTX

Script Examples

One-Time Script Example: Hello World
A simple demonstration script to display “Hello World” on the screen. Script closes when you use the
momentary switch SH.

● To install, copy the code below to a file called HelloWorld.lua
● Place the file in the SCRIPTS folder of the SD card
● Browse the SD card contents to the SCRIPTS folder and press enter on the HelloWorld.lua entry
● Execute script
● Use the Momentary Switch SH to close the script

local function init_func()
 local switch_value = 0
end

local function run_func(event)
 lcd.lock()
 lcd.clear()
 lcd.drawText(10,10,"Hello World",MIDSIZE)
 switch_value = getValue(99)

 if switch_value > 100 then
 return 1 -- Exit
 else
 return 0
 end
end

return { run=run_func, init=init_func }

Lua Scripting in OpenTX

One-Time Script Example: Generic Template

This is a template that I made for somebody who wanted to use a switch in order to check the limits of each
channel (without any dual rates, expos, offsets etc. applied).

The inserted lines in the mixes are named "A-CAL", which allows the user either to change the switch by
calling again the Lua script with another switch, or to remove all inserted lines by selecting "---" as a switch.

local swtch = 0

local function init()
 for channel = 0, 32, 1 do
 for idx = 0, model.getMixesCount(channel), 1 do
 mix = model.getMix(channel, idx)
 if mix ~= nil and mix.name == "A-CAL" then
 swtch = mix.switch
 end
 end
 end
end

local function removeTemplate()
 for channel = 0, 32, 1 do
 for idx = 0, model.getMixesCount(channel), 1 do
 mix = model.getMix(channel, idx)
 if mix ~= nil and mix.name == "A-CAL" then
 model.deleteMix(channel, idx)
 end
 end
 end
end

local function applyTemplate()
 for channel = 0, 32, 1 do
 count = model.getMixesCount(channel)
 if count > 0 then
 first_mix = model.getMix(channel, 0)
 mix_source = first_mix["source"]

Lua Scripting in OpenTX

 if mix_source >= 1 and mix_source <= 32 then
 input = model.getInput(mix_source-1, 0)
 mix = { name="A-CAL", source=input["source"], weight=100, switch=swtch, multiplex=REPLACE }
 model.insertMix(channel, count, mix)
 else
 mix = { name="A-CAL", source=mix_source, weight=100, switch=swtch, multiplex=REPLACE }
 model.insertMix(channel, count, mix)
 end
 end
 end
end

local function run(event)
 lcd.lock()
 result = popupInput("Switch", event, swtch, -SWSRC_LAST, SWSRC_LAST)
 lcd.drawSwitch(62, 24, swtch, 0);
 if result == "OK" then
 removeTemplate()
 if swtch ~= 0 then
 applyTemplate()
 end
 return 1
 elseif result == "CANCEL" then
 return 1
 else
 swtch = result
 return 0
 end
end

return { init=init, run=run }

Lua Scripting in OpenTX

Model Script Example: Delta Mixer
This example shows how to setup a single delta mix, with its configuration pages (2 sources with a weight
on each). It should not be used for real model! This example has four inputs and two outputs:

-- this is comment in LUA

-- inputs definition, here we use variable named inp.
--
local inp = {
 -- first input: user defined input that will be
 -- displayed as "Aileron" in setup screen
 { "Aileron", SOURCE },
 { "Elevator", SOURCE },
 -- third input: user defined constant value
 { "Ail. ratio", VALUE, -100, 100, 0 },
 { "Ele. ratio", VALUE, -100, 100, 0 }
 }

-- outputs definition
local out = { "Elv1", "Elv2" }

-- periodic run function
-- order of parameters follows inp definition,
-- first parameter is "Aileron", second is "Elevator", etc...
local function run_func(input1, input2, ratio1, ratio2)
 -- remember to use local modifier for variables,
 -- if omitted variable value1 would be GLOBAL!

 -- input1 has current value of input that is selected
 -- under "Aileron" in script setup screen
 local value1 = (input1 * ratio1) / 100
 local value2 = (input2 * ratio2) / 100
 -- again, REMEMBER local
 local elevon1 = value1 + value2
 local elevon2 = value1 - value2

 -- now return outputs
 -- elevon1 returned for "Elv1", elevon2 for "Elv2"
 return elevon1, elevon2
end

-- declaration of interface (we do not use init in this example)
-- this is where we link our local variables and funcitons to the OpenTX
-- run_func() is defined as run function
-- inp table is defined as input
-- out table is defined as output
return { run=run_func, input=inp, output=out}

See also:

Lua Scripting in OpenTX

● Inputs syntax

● Outputs syntax

Lua Scripting in OpenTX

Telemetry Script Example: Screen #1
This is the first Lua telemetry screen script. It can be used to add an additional telemetry screen to any
model. OpenTX firmware version 2.0.4 or greater is needed to use the script. You can edit the script
yourself to change what information that is displayed.

To Install Script:
● Download the telemetry screen script from here: Download Link
● Create a folder on the radio microSD card called SCRIPTS (if it does not already exist)
● Create a new subfolder in the SCRIPTS folder. Give the subfolder the same name as the model that

will use the script.
● Place the script file in the folder. The path should read: /SCRIPTS/modelname/telem1.lua
● Create a subfolder in the modelname folder called BMP. The Path will become /SCRIPTS/

modelname/BMP
● Place the the two bitmap files in the BMP folder (altitude-0.bmp and altitude-1.bmp)

That is it. The new telemetry screen should now automatically appear for the model.

Lua Scripting in OpenTX

http://lua-20.open-tx.org/telem1.zip

Telemetry Script Example: Screen #2
This is the second Lua telemetry screen example script. It can be used to add an additional telemetry
screen to any model. OpenTX firmware version 2.0.6 or greater is needed to use the script. The script will
display two timers, the battery value and the altitude. The altitude is displayed using a new very large font.
You can edit the script yourself to change what information that is displayed.

To Install Script:
● Download the telemetry screen script from here: Download Link
● Create a folder on the radio microSD card called SCRIPTS (if it does not already exist)
● Create a new subfolder in the SCRIPTS folder. Give the subfolder the same name as the model that

will use the script.
● Place the script file in the folder. The path should read: /SCRIPTS/modelname/telem2.lua

That is it. The new telemetry screen should now automatically appear for the model.

Lua Scripting in OpenTX

http://lua-20.open-tx.org/telem2.zip

Model Script Example: Automatic Battery Cell Detection
This model script calculates the number of LiPo cells in connected battery and outputs a voltage of one cell.
It can be used for automatic setting of low battery alarm in models where different cell count batteries are
used interchangeably.
Script algorithm:

● waits for new battery (voltage change from zero to some value)
● calculates number of cells based on battery voltage
● outputs battery voltage divided by number of cells
● when new battery is detected, steps repeat

Setup screens:

This script must be placed onto SD card into folder /SCRIPTS/MIXES/. Script must be activated and its
inputs and outputs set in Model settings Custom scripts page.
This example shows battery voltage (A2) is 11.2 Volts, detected cell count was 3 and calculated voltage for
one cell is 3.73 Volts. Script output Vcel is multiplied by 10, so 3.73V is outputted as 37.3.
Vcel output is then used in Logical switch L1, which becomes true when cell voltage drops below 3.3V
(remember value is multiplied by 10).
Special function is added to play battery low warning when L1 is true.

Script cellv.lua:

Lua Scripting in OpenTX

-- cell voltage calculator

local inputs = { {"Bat. volt", SOURCE}, {"Play", VALUE, 0, 1, 0} }

local outputs = { "Vcel" }

local wait_end = 0

local cell_count = 1

local state

local filtered_voltage = 0

--state functions forward declaration

local wait, no_battery, wait_to_stabilize, calc, done

function no_battery()

 -- wait for battery

 if filtered_voltage > 3 then

 state = wait_to_stabilize

 wait_end = getTime() + 200

 --print("wait " .. wait_end)

 end

end

function wait_to_stabilize()

 -- wait some time for battery voltage to stabilize

 if getTime() >= wait_end then

 state = calc

 --print("calc")

 end

end

function calc(play)

 -- calculate cell count

 cell_count = math.ceil(filtered_voltage / 4.25) --this works up to 12 cells

 print("filtered_voltage: " .. filtered_voltage)

 print("cell count: " .. cell_count)

 -- play detected cell count

 if play > 0 then

 playNumber(cell_count, 0, 0)

 playFile("/SOUNDS/en/celdet.wav") -- wav says: "cell battery detected"

 end

 state = done

 --print("done")

end

function done()

 if filtered_voltage < 2 then

 state = no_battery

 --print("no_battery")

Lua Scripting in OpenTX

 end

end

local function run(voltage, play)

 filtered_voltage = filtered_voltage * 0.9 + voltage * 0.1

 --if getTime() % 500 == 0 then print("v: " .. filtered_voltage) end

 if state == nil then state = no_battery end --state initialization

 state(play) --call state function

 if cell_count > 0 then

 return (voltage / cell_count) * 102.4

 end

 return 0

end

return { run=run, input=inputs, output=outputs }

Lua Scripting in OpenTX

Appendix

LUA Source List
This is a list of all index numbers that can be used as a SOURCE for getValue. As of 2.0.6 the names are
not valid, only the number. This is currently under development so use with caution. Planned to be released
in 2.0.8

number name description

1 input1 Input [I1]

2 input2 Input [I2]

3 input3 Input [I3]

4 input4 Input [I4]

5 input5 Input [I5]

6 input6 Input [I6]

7 input7 Input [I7]

8 input8 Input [I8]

9 input9 Input [I9]

10 input10 Input [I10]

11 input11 Input [I11]

12 input12 Input [I12]

13 input13 Input [I13]

14 input14 Input [I14]

15 input15 Input [I15]

16 input16 Input [I16]

17 input17 Input [I17]

18 input18 Input [I18]

19 input19 Input [I19]

20 input20 Input [I20]

21 input21 Input [I21]

22 input22 Input [I22]

23 input23 Input [I23]

24 input24 Input [I24]

25 input25 Input [I25]

Lua Scripting in OpenTX

26 input26 Input [I26]

27 input27 Input [I27]

28 input28 Input [I28]

29 input29 Input [I29]

30 input30 Input [I30]

31 input31 Input [I31]

32 input32 Input [I32]

75 rud Rudder

76 ele Elevator

77 thr Throttle

78 ail Aileron

79 s1 Potentiometer 1

80 s2 Potentiometer 2

81 s3 Potentiometer 3

82 ls Left slider

83 rs Right slider

85 cyc1 Cyclic 1

86 cyc2 Cyclic 2

87 cyc3 Cyclic 3

88 trim-rud Rudder trim

89 trim-ele Elevator trim

90 trim-thr Throttle trim

91 trim-ail Aileron trim

92 sa Switch A

93 sb Switch B

94 sc Switch C

95 sd Switch D

96 se Switch E

97 sf Switch F

98 sg Switch G

99 sh Switch H

Lua Scripting in OpenTX

100 ls1 Logical switch L1

101 ls2 Logical switch L2

102 ls3 Logical switch L3

103 ls4 Logical switch L4

104 ls5 Logical switch L5

105 ls6 Logical switch L6

106 ls7 Logical switch L7

107 ls8 Logical switch L8

108 ls9 Logical switch L9

109 ls10 Logical switch L10

110 ls11 Logical switch L11

111 ls12 Logical switch L12

112 ls13 Logical switch L13

113 ls14 Logical switch L14

114 ls15 Logical switch L15

115 ls16 Logical switch L16

116 ls17 Logical switch L17

117 ls18 Logical switch L18

118 ls19 Logical switch L19

119 ls20 Logical switch L20

120 ls21 Logical switch L21

121 ls22 Logical switch L22

122 ls23 Logical switch L23

123 ls24 Logical switch L24

124 ls25 Logical switch L25

125 ls26 Logical switch L26

126 ls27 Logical switch L27

127 ls28 Logical switch L28

128 ls29 Logical switch L29

129 ls30 Logical switch L30

130 ls31 Logical switch L31

Lua Scripting in OpenTX

131 ls32 Logical switch L32

132 trn1 Trainer input 1

133 trn2 Trainer input 2

134 trn3 Trainer input 3

135 trn4 Trainer input 4

136 trn5 Trainer input 5

137 trn6 Trainer input 6

138 trn7 Trainer input 7

139 trn8 Trainer input 8

140 trn9 Trainer input 9

141 trn10 Trainer input 10

142 trn11 Trainer input 11

143 trn12 Trainer input 12

144 trn13 Trainer input 13

145 trn14 Trainer input 14

146 trn15 Trainer input 15

147 trn16 Trainer input 16

148 ch1 Channel CH1

149 ch2 Channel CH2

150 ch3 Channel CH3

151 ch4 Channel CH4

152 ch5 Channel CH5

153 ch6 Channel CH6

154 ch7 Channel CH7

155 ch8 Channel CH8

156 ch9 Channel CH9

157 ch10 Channel CH10

158 ch11 Channel CH11

159 ch12 Channel CH12

160 ch13 Channel CH13

161 ch14 Channel CH14

Lua Scripting in OpenTX

162 ch15 Channel CH15

163 ch16 Channel CH16

164 ch17 Channel CH17

165 ch18 Channel CH18

166 ch19 Channel CH19

167 ch20 Channel CH20

168 ch21 Channel CH21

169 ch22 Channel CH22

170 ch23 Channel CH23

171 ch24 Channel CH24

172 ch25 Channel CH25

173 ch26 Channel CH26

174 ch27 Channel CH27

175 ch28 Channel CH28

176 ch29 Channel CH29

177 ch30 Channel CH30

178 ch31 Channel CH31

179 ch32 Channel CH32

180 gvar1 Global variable 1

181 gvar2 Global variable 2

182 gvar3 Global variable 3

183 gvar4 Global variable 4

184 gvar5 Global variable 5

185 gvar6 Global variable 6

186 gvar7 Global variable 7

187 gvar8 Global variable 8

188 gvar9 Global variable 9

189 tx-voltage Transmitter battery voltage [volts]

190 clock RTC clock [minutes from midnight]

196 timer1 Timer 1 value [seconds]

197 timer2 Timer 2 value [seconds]

Lua Scripting in OpenTX

198 swr Transmitter antenna quality [less is better]

200 rssi RSSI [more is better]

202 a1 A1 analogue value [units as configured]

203 a2 A2 analogue value [units as configured]

204 a3 A3 analogue value [units as configured]

205 a4 A4 analogue value [units as configured]

206 altitude Variometer altitude [meters]

207 rpm Rotational speed [revolutions per minute]

208 fuel Fuel level [???]

209 temp1 Temperature 1 [degrees celsius]

210 temp2 Temperature 2 [degrees celsius]

211 gps-speed GPS speed [???]

212 distance GPS distance [meters]

213 gps-altitude GPS altitude [meters]

214 cell-min LiPo sensor - lowest current cell voltage [volts]

215 cell-sum LiPo sensor - current summ of all cell voltages [volts]

216 vfas Current sensor - voltage [volts]

217 current Current sensor - current [ampers]

218 consumption Current sensor - consumption [mili amper hours]

219 power Current sensor - power [wats]

220 accx G sensor - acceleration in X axis [g]

221 accy G sensor - acceleration in Y axis [g]

222 accz G sensor - acceleration in Z axis [g]

223 heading GPS heading [degrees]

224 vertical-speed Variometer vertical speed [m/s]

225 air-speed Air speed [knots]

226 dte Total energy [???]

232 a1-min A1 analogue value minimum [units as configured]

233 a2-min A2 analogue value minimum [units as configured]

234 a3-min A3 analogue value minimum [units as configured]

235 a4-min A4 analogue value minimum [units as configured]

Lua Scripting in OpenTX

236 altitude-min Lowest altitude [meters]

237 altitude-max Highest altitude [meters]

238 rpm-max Highest rotational speed [revolutions per minute] [meters]

239 temp1-max Highest temperature 1 [degrees celsius]

240 temp2-max Highest temperature 2 [degrees celsius]

241 gps-speed-max Highest GPS speed [???]

242 distance-max Biggest GPS distance [meters]

243 air-speed-max Highest air speed [knots]

244 cell-min-min LiPo sensor - all time lowest cell voltage [volts]

245 cell-sum-min LiPo sensor - all time lowest summ of all cell voltages [volts]

246 vfas-min Current sensor - lowest voltage [volts]

247 current-max Current sensor - highest current [ampers]

248 power-max Current sensor - highest power [wats]

Lua Scripting in OpenTX

Character Maps

SMLSIZE
Font file: font_04x06.png for characters below 0xC0

: font_04x06_extra.png for characters above 0xc0

Hex Char Hex Char Hex Char Hex Char Hex Char

20 3A : 54 T 6E n

21 ! 3B ; 55 U 6F o

22 “ 3C < 56 V 70 p

23 # 3D = 57 W 71 q

24 $ 3E > 58 X 72 r

25 % 3F ? 59 Y 73 s

26 & 40 ⁰ 5A Z 74 t

27 ‘ 41 A 5B [75 u

28 (42 B 5C \ 76 v

29) 43 C 5D] 77 w

2A * 44 D 5E ^ 78 x

2B + 45 E 5F _ 79 y

2C , 46 F 60 ~ 7A z

2D - 47 G 61 a 7B {

2E . 48 H 62 b 7C |

2F / 49 I 63 c 7D }

30 0 4A J 64 d 7E →

31 1 4B K 65 e 7F ←

32 2 4C L 66 f

22 3 4D M 67 g

34 4 4E N 68 h C0 ↑

35 5 4F O 69 i C1 ↓

36 6 50 P 6A j C2 ↗

37 7 51 Q 6B k C3 ↘

37 8 52 R 6C l C4 ↙

39 9 53 S 6D m C5 ↘

Lua Scripting in OpenTX

default
default character set (no constant so use att = 0)
Font file: font_05x07.png & font_05x07_extra.png

Hex Char Hex Char Hex Char Hex Char Hex Char

20 3A : 54 T 6E n

21 ! 3B ; 55 U 6F o

22 “ 3C < 56 V 70 p

23 # 3D = 57 W 71 q

24 $ 3E > 58 X 72 r

25 % 3F ? 59 Y 73 s

26 & 40 ⁰ 5A Z 74 t

27 ‘ 41 A 5B [75 u

28 (42 B 5C \ 76 v

29) 43 C 5D] 77 w

2A * 44 D 5E ^ 78 x

2B + 45 E 5F _ 79 y

2C , 46 F 60 ~ 7A z

2D - 47 G 61 a 7B {

2E . 48 H 62 b 7C |

2F / 49 I 63 c 7D }

30 0 4A J 64 d 7E →

31 1 4B K 65 e 7F ←

32 2 4C L 66 f

22 3 4D M 67 g C0 ↑

34 4 4E N 68 h C1 ↓

35 5 4F O 69 i C2 ↗

36 6 50 P 6A j C3 ↘

37 7 51 Q 6B k C4 ↙

37 8 52 R 6C l C5 ↘

39 9 53 S 6D m C6 △

Lua Scripting in OpenTX

MIDSIZE
Font file: font_08x10.png

Hex Char Hex Char Hex Char Hex Char Hex Char

20 3A : 54 T 6E n

21 ! 3B ; 55 U 6F o

22 “ 3C < 56 V 70 p

23 # 3D = 57 W 71 q

24 $ 3E > 58 X 72 r

25 % 3F ? 59 Y 73 s

26 & 40 ⁰ 5A Z 74 t

27 ‘ 41 A 5B [75 u

28 (42 B 5C \ 76 v

29) 43 C 5D] 77 w

2A * 44 D 5E ^ 78 x

2B + 45 E 5F _ 79 y

2C , 46 F 60 ~ 7A z

2D - 47 G 61 a 7B {

2E . 48 H 62 b 7C |

2F / 49 I 63 c 7D }

30 0 4A J 64 d 7E →

31 1 4B K 65 e 7F ←

32 2 4C L 66 f

22 3 4D M 67 g

34 4 4E N 68 h

35 5 4F O 69 i

36 6 50 P 6A j

37 7 51 Q 6B k

37 8 52 R 6C l

39 9 53 S 6D m

Lua Scripting in OpenTX

DBLSIZE
Font file: font_10x14.png

Lua Scripting in OpenTX

XXLSIZE
Uses font file font_22x38.png

Hex Character

2C ,

2D -

2E .

2F _

30 0

31 1

32 2

33 3

34 4

35 5

36 6

37 7

38 8

39 9

3A :

Lua Scripting in OpenTX

Links to external documentation:

● OpenTX Web Site
● OpenTX Development Wiki
● Programming in Lua
● Lua 5.2 Reference Manual
● OpenTX University

Lua Scripting in OpenTX

http://www.open-tx.org/
https://github.com/opentx/opentx/wiki
http://www.lua.org/pil/contents.html
http://www.lua.org/manual/5.2/manual.html
http://open-txu.org/

Document Style
● Code examples are formatted using the Code Pretty Add-on for Google Docs.
● Where possible, each function should have examples with a screen shot.
● Functions and Constants should reference the version it has been added and if applicable, the

version it was depreciated.

Lua Scripting in OpenTX

Acknowledgments

Lua Scripting in OpenTX

