Продолжаю цикл статей о применении нехитрых и простых электронных устройств, полезных или бесполезных на борту модели, а так же просто идеи – бредовые и не очень )))). Как и прежде, я не открываю ничего нового, а просто напоминаю о том, что применение тех или иных устройств может как-то улучшить модель и облегчить жизнь моделисту.

В данной статье речь пойдет о датчике температуры и возможном его применении. Собственно, датчик разрабатывался для контроля (не путать с измерением!) температуры ходового двигателя. Так же аналогичный датчик температуры можно применить для контроля температуры, например, FPV-передатчика, регулятора оборотов двигателя и т.п. с последующим включением/отключением системы охлаждения устройства по порогу температуры.
Датчик имеет один дискретный (вкл/выкл) выход – переключение по порогу температуры, который управляет сигналом тревоги, передаваемым по аудиоканалу (через микрофон) FPV-передатчика на наземную станцию оператора, а так же бортовыми сигнальными огнями и бортовым звуковым сигнализатором – «пищалкой»)))).

В данной статье в качестве примера будет рассматриваться мотор Turnigy Park 480-850KV
Turnigy Park480 Brushless Outrunner 850kv
Товар http://www.parkflyer.ru/product/114800/


Как и все моторы, покупаемые в большинстве случаев моделистами, этот мотор не оснащен датчиком температуры, а все его обмотки (как, собственно, и других аналогичных по своему устройству моторов) расположены на неподвижной внутренней части – статоре и их охлаждение затруднено. Казалось бы, вращающийся снаружи ротор постоянно обдувается окружающим воздухом и может за счет теплопередачи отводить тепло от статора, но в реальности дело обстоит не совсем так. Ротор и статор имеют очень маленькую площадь теплового контакта – только подшипники, а между сердечниками статора и ротором имеется воздушный зазор с достаточно низкой теплопроводностью. Поэтому, когда вы, скажем после полета, ощущаете рукой, что двигатель вашей модели снаружи «горяченький» - это может означать, что на самом деле обмотка, расположенная в глубине корпуса двигателя близка к тому, чтобы «покраснеть от нагрева», а смазка в подшипниках и вовсе «потекла» )))).

Для контроля температуры было решено установить датчик температуры непосредственно на обмотке в неподвижной части корпуса мотора со стороны моторной рамы, где оказалось достаточно много места для установки датчика (рис. 1). Кстати, эта часть мотора практически не обдувается окружающим воздухом и, следовательно, имеет самую высокую температуру при работе мотора.


К сожалению, я не нашел в магазинах радиодеталей нашего города интегральных датчиков температуры, типа LMx35 и им подобных, в интернет-магазинах цена таких датчиков в пределах 100руб/шт + стоимость доставки…. В общем, с точки зрения оперативности приобретения, общей стоимости, а так же отсутствия свободных каналов для телеметрии решено было обойтись тем, что всегда доступно для покупки в магазинах с учетом возможности получения сигнала о нештатной ситуации на борту. О как сказанул!!! ))))

Итак, датчик представляет собой цепь из включенных последовательно кремниевых диодов. Принцип работы основан на изменении проводимости полупроводникового элемента под влиянием температуры.
Количество диодов в цепи определяет чувствительность датчика, но в то же время оно ограничено внутренним пространством мотора и физической возможностью монтажа такой цепочки в корпусе мотора. В моем случае применено три диода. Предпочтение отдано диодам типа КД521/522, которые имеют стеклянный корпус диаметром 2мм и длиной менее 4мм с достаточно гибкими выводами. Стеклянный корпус, в отличие от пластикового корпуса, имеет более низкую температурную инерционность и бОльшую стойкость к высокой температуре. Диоды спаяны между собой последовательно, места соединений утянуты в термоусадочную трубку. Полученную цепочку диодов (рис.2) не составляет труда разместить в корпусе мотора.

Так как у меня нет эталонного термометра, способного измерить прямо в корпусе температуру обмоток и по ней настроить датчик на срабатывание, то настройка порога срабатывания датчика производилась до установки диодов в корпус мотора. Перед настройкой должна быть собрана схема компаратора (рис. 9), которая будет использоваться с этим датчиком температуры. В качестве «Сигнала» используется светодиод либо готовый сигнализатор, например собранный по схеме на рис. 10.

Настройка срабатывания.

Настройка порога срабатывания и гистерезиса не представляется сложной.
Для настройки использовалась жестяная банка из-под кофе, к боковой стенке которой прикреплен датчик температуры. Поверхность банки под датчиком температуры очищена от краски, «до железа».
Диоды датчика расположены вдоль банки по ее высоте (рис. 4), тепловые зазоры между банкой и диодами заполнены теплопроводной пастой КПТ-8 (продается в магазинах радиодеталей, вид тюбика на рис. 3), а затем плотно примотаны изолентой (ох, уж эта синяя изолента – она тоже тут!!!).


В качестве среды использовалась вода, наливаемая в банку, измерение температуры воды производилось по термометру 0-100С (приобретен для домашних нужд в магазине аксессуаров для бань), опущенному в банку с водой.

Порядок настройки:
- Включаем питание схемы компаратора, поворотом резистора R3 (рис. 9) добиваемся выключения сигнала.
- Далее, размешивая, наливаем (ОСТОРОЖНО !!!!) в банку горячую и холодную воду до получения температуры 60С (у меня порог включения такой). Ждем 3-5 сек прогрева датчика (температура – вещь инерционная), поворотом резистора R3 в обратную сторону добиваемся включения сигнала.
- Охлаждаем воду, следим за температурой на термометре до выключения сигнала, отмечаем температуру выключения. Если она нас не устраивает, то подбираем резистор R4 (рис. 9), который можно заменить на время настройки цепочкой из включенных последовательно резисторов - постоянного 100кОм и переменного 1Мом. После настройки желательно заменить эту цепочку на постоянный резистор с номиналом, максимально близким к полученному суммарному сопротивлению этих двух резисторов.
- Окончательно проверяем порог срабатывания и гистерезис, фиксируем резистор R3.
- Отключаем питание.
- Охлаждаем и сливаем воду, снимаем датчик с банки, очищаем его от теплопроводной пасты и обезжириваем.

Датчик готов, схема компаратора настроена. Можно вклеивать датчик в корпус мотора.

Для установки в корпус пропускаем провода датчика температуры через отверстия-окна в корпусе мотора (рис. 5). Выпустив провода датчика наружу в отверстие для выводов мотора, слегка вытягиваем их, одновременно аккуратно укладываем диоды внутри корпуса – гибкости выводов достаточно.

Главное – не повредить обмотку!!!


Планируемое расположение диодов относительно элементов мотора показано на рис. 6а, фактическое расположение – на рис. 6б и 6в - более крупно.

Для фиксации диодов внутри корпуса применен теплопроводный (не путать с термоклеем!!!) клей «Radial» (рис. 7). Такой клей продается в магазине радиодеталей, обладает высокой теплопроводностью и применяется для приклеивания радиокомпонентов к радиаторам охлаждения.

http://kellereurasia.ru/portfolio/teploprovodnyj-klej-radial/


Согласен, что вряд ли такой клей будет в арсенале моделиста, скорее он будет в арсенале радиолюбителя. Поэтому есть альтернативный вариант – эпоксидный клей, который скорее всего у моделиста есть )))). У каждого варианта есть свои плюсы и минусы, например теплопроводный клей после высыхания представляет собой эластичную массу с высокой теплопроводностью, однако прочность крепления гораздо ниже, чем у «эпоксидки». Относительно невысокая прочность склеивания облегчает жизнь при разборке и перемотке мотора. «Эпоксидка» же «намертво» приклеит датчик к статору, зато затруднит разборку для перемотки мотора, да и теплопроводность «эпоксидки» ниже, чем указанного теплопроводного клея.

Важно!!! Нельзя использовать для обезжиривания перед склеиванием вещества, способные повредить лаковую изоляцию обмотки.

Я, честно говоря, вообще обмотки не обезжиривал, а клеил сразу – клей, попадая между витками обмотки хорошо «держится» за них. После окончательной установки датчика в корпус мотора, свил провода датчика между собой. На рис. 8 показан приклеенный диод в корпусе мотора (правда, это более «ранний» мотор с диодом другого типа). Видны излишки клея на внешней стороне корпуса мотора, которые будут аккуратно срезаны после полного высыхания клея (1 сутки).


Контроль температуры и включение/выключение сигнальных устройств производится электронной схемой - компаратором. Выбор схемы пал на простое и отработанное многократным повторением решение. В статье компаратор будет рассматриваться отдельно от устройства сигнализации.

Варианты схем компаратора на микросхемах LM311 и К554СА3 представлены на рис. 9.

Краткое описание работы.

Компаратор – устройство сравнения – выполнен по одной из типовых схем включения. Микросхема компаратора имеет два входа, на один из которых подается опорное напряжение, устанавливаемое резистором R3, на второй – напряжение с датчика температуры для последующего сравнения их друг с другом. При увеличении температуры происходит снижение напряжения на выходе датчика ниже установленного значения опорного напряжения и на выходе микросхемы появляется напряжение высокого уровня, которое подается на затвор ключа VT1 и открывает его. Через открытый ключ подается напряжение питания на сигнализатор. Для FPV-системы необходимо, чтобы сигнализатор был «звуковым», а FPV-передатчик был оснащен микрофоном.

Резистор R1 подбирается таким образом, чтобы ток через диоды VD1-VD3 не превышал 1мА, что предотвращает разогрев датчика температуры протекающим через него током.
С помощью резистора R3 устанавливается порог срабатывания компаратора при заданной температуре.
Подбором резистора R4 устанавливается гистерезис – порог возврата компаратора в исходное состояние (разница температур), назовем это «зоной перегрева».
У меня получились примерно следующие результаты:
При R4=120кОм гистерезис составил 17 градусов Цельсия;
При R4=680кОм гистерезис составил 5 градусов Цельсия;
Конденсаторы C1 и С2 предназначены для подавления импульсных помех от работающего мотора (регулятора).
Трнзистор VT1 следует выбирать исходя из мощности нагрузки – суммарной мощности «сигнализатора».
Транзистор VT1 – «мосфет» с n-каналом - может быть заменен на биполярный транзистор соответствующей мощности, однако в этом случае его, возможно, потребуется установить на радиатор.
Вместо микросхемы LM311 могут быть применены LM111 и LM211, которые работают в более широком температурном диапазоне. Схема их включения аналогична LM311.
На микросхеме L7809C – интегральном стабилизаторе выполнен, собственно стабилизатор напряжения 9В.
Соединительные провода от датчика температуры до платы компаратора должны иметь максимально короткую длину в зависимости от конструктивных особенностей расположения платы.
От себя добавлю, что я стараюсь всегда в схемах ключей использовать «мосфеты», ибо разница в цене с аналогичными по параметрам «биполярниками» невелика, а выигрыш от их параметров ощутимый.
Сигнал.
В качестве сигнализатора могут быть использованы различные устройства в соответствии с решаемыми задачами. Ниже приведу пару вариантов (рис. 10).

На рис. 10а представлена схема сигнализатора, который подает непрерывный звуковой и световой сигналы все время, пока температура находится в «зоне перегрева».
Резистором R2 можно изменять частоту звукового сигнала («тон»).
Громкоговритель/«пищалка» B1 может быть любого типа и выбирается, исходя из решаемых задач. Аналогично выбираются светодиоды VD1, VD2.
Транзистор VT1 – «мосфет» с n-каналом, резисторы R4 и R5 выбираются, исходя из параметров B1, VD1 и VD2 соответственно.
Транзистор VT1 может быть заменен на биполярный транзистор соответствующей мощности.

На рис. 10б представлена схема сигнализатора, который подает прерывистый звуковой и световой сигналы все время, пока температура находится в «зоне перегрева».
Резистором R3 можно изменять частоту импульсов звукового и светового сигнала.
Резистором R4 можно изменять частоту звукового сигнала («тон»).
Громкоговритель/«пищалка» B1 может быть любого типа и выбирается, исходя из решаемых задач. Аналогично выбирается светодиод VD1.
Транзистор VT1 – «мосфет» с n-каналом, резисторы R6 и R7 выбираются, исходя из параметров B1, VD1 и VD2 соответственно.
Транзистор VT1 может быть заменен на биполярный транзистор соответствующей мощности.

Оба сигнализатора выполнены на одной микросхеме 561ЛА7 (либо ее зарубежном аналоге 4011). В схеме на рис. 10а используется только половина этой микросхемы – всего два элемента.

В заключении хочу отметить, что компаратор можно использовать с широким спектром выходных устройств (рис. 11) как отдельно, так и в любом их сочетании. При использовании с индуктивной нагрузкой, последнюю следует зашунтировать диодом соответствующей мощности в обратном включении.

А что? Например при перегреве мотора можно залить мотогондолу огнетушащим составом , как у «взрослого» самолета!!! Шутка...))))))





Как всегда, постараюсь ответить на вопросы. Конструктивную критику приветствую.
Всем удачных полетов, заплывов и покатушек!